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Effect of phase fluctuation on Hopf bifurcation
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Hopf bifurcation inducing lasing without inversion has been analyzed by taking into account the effect of
phase fluctuation in the driving field based on a closed three level ladder-type atomic model. It is shown
that due to the phase fluctuation of the driving field, the necessary threshold increases significantly.
Furthermore the area domain to get lasing without inversion decreases as the driving field’s linewidth

increases.
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Since the seminal works of Kocharovskaya, Harris and
Scully et al.l' 3], lasing without inversion (LWI) has at-
tracted tremendous attention, beacause it can provide a
new tool in the pursuit of tabletop UV or <y -ray laser
and has other interesting statistical properties!*=3l. Re-
cently Mompart et al. studied instability in the closed
resonant lower-ladder system and found that the desta-
bilization of the nonlasing solution can occur through a
Hopf bifurcation giving rise to self-pulsing emission, but
in the study the phase of the driving field is fixed['*.
However, in fact the phase of the driving field is generally
variable. It is well known that phase fluctuation of the
driving field can significantly influence the optical prop-
erties of driven atomic systems!'5-1%). Fleischhauer et al.
studied the influence of pump-field phase diffusion on
laser gain in a closed V three level system, and found that
the phase diffusion leads to a decay of the coherent trap-
ping state and the gain is reduced!’”). Gong et al. found
that in a simple three-level atomic system, a change from
an inversion laser to a noninversion laser action can oc-
cur as the driving-field linewidth increases('® and the
linewidth of the drivinF field precludes the medium from
becoming transparent!’?:29], In this paper, we investi-
gate the nonlinear dynamic behavior of LWI by taking
into account phase fluctuation of the driving field based
on a closed three level atomic model. We find that due to
the phase fluctuation of the driving field, the necessary
threshold is increased significantly. Furthermore the area
domain to get LWI is decreased.

We consider the closed lower-ladder system. The
medium levels are named 1, 2, 3. The driving field with
Rabi frequency 2 is resonant with transition 1-2, and the
medium placed inside a unidirectional ring laser cavity is
resonant with the lasing transition 1-3. An incoherent
pump field with a pumping rate A and a weak coherent
laser field with Rabi frequency « are coupled between
levels 1 and 2. The transition between levels 2 and 3 is
forbidden. We seek solutions of the problem so that the
slowly varying density matrix element amplitudes of the
medium in the interacting picture have the forms

P21 = —iT21, P31 = —iT31, P32 = T32, 1)

where z51, 231 and 35 are real time-dependent variables.
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In our notation, if z3; > 0, the system exhibits gain for
the probe field; If z3; < 0, the probe field is attenuated.
In the rotating-wave slowly varying envelope and mean
field approximations, this scheme is governed by the set
of Maxwell-Bloch equations

dp11/dt = Ry + 2Qx01 + 201231,

dpaa/dt = Ry — 2Qx1,

dzo1 /dt = —ygzo1 — Q(p11 — p22) + axsa,

dzs; /dt = —ya231 + (1l — 2p11 — pa2) + Qz31,
dzss/dt = —ypx32 — Q3 — w21,

da/dt = —ka + gz3;. (2)

In above equations, the closure relation p11+pas+pss = 1
has been used. k and g signify the damping rate of the
lasing field due to cavity loss and the unsaturated gain of
the lasing transition, respectively. In the radiative limit,
the atomic polarization damping rates ~y,, s, and 4 can
be expressed as

Yo = (w31 +wa1 + wi3)/2,

Y = (w12 + w13)/2,

Ya = (w31 + w21 +w12)/2. (3)
The expressions of Ry and Ry are

Ri = Pp11 + Qpa2 + wis,

Ry = wa1p11 — wi2p22, (4)
where
P = —(w9; + w31 + wi3), Q = w1z — wi3. (5)

w12, W1, w13 and ws; in expressions (3), (4) and (5) de-
pend upon the particular choice of the schemes. For the
lower-ladder scheme (Fig. 1),

wiz = 0, w1 = Y12, w13 =131 + A, wa = A (6)
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Fig. 1. The closed three level ladder-type atomic model. 31
and 712 are the spontaneous decay rates, A is the incoherent
pump rate and () is Rabi frequency of the probe (driving)
field.

Here «;; denotes the decay rate from level ¢ to j, and
A is the incoherent pump rate.

The above analysis assumed that the phase of the driv-
ing field is fixed. However this is impractical. Let ¢(t)
represent the phase fluctuation of the driving field, i.e.

' = Qexplig(t)], (7)

here (1 is assumed to be real. The phase is characterized
by the following random equation of motion[?],

o(t) = u(t) (8)

with zero average, ie., (u(t)) = 0. Here u(t) is
a d-correlated Langevin-noise term, whose diffusion
coefficient gives the linewidth 2Ry, of the driving field,
ie.

(u®)p(t)) =2RL6(t — ). 9)

In this case, the Maxwell-Bloch equations should be av-
eraged over the random fluctuation phase. That is, the
density-matrix elements p;;, p;; must be replaced by their
stochastic averaged values (p;;), (pi;) respectively. By us-
ing the method of Refs. [19, 20, 22 — 24], it can be known
that the phase fluctuation in the driving field modifies
the off-diagonal rates 4 and v to v; = ~v¢ + R and
v, = Yo + Ry, respectively. In other words, because of the
phase fluctuation of the driving field, the off-diagonal
decay rates now have additional diffusion terms along
with the usual decay rates. In the subsequent section, we
will discuss the effect of phase fluctuation on the driving
field.

Setting « and all time-derivatives in Eq. (2) be zero,
the nonlasing solution is

r31 =T33 = 0,221 = 297 = QP — p31) /74,

P = 2wz + 74/w1w13]/ D,

Pz = [2Q%wi3 + ygwa1wis)/ D,

Pg3 =1- Pg2 - p(1)17 (10)
where

D = -20%(P + Q + w2 — w12)

—fy('i(me+w21Q). (11)

In the following, the population difference defined by
nij = P — Pgjn (12)

is used. The noninversion condition implies n13 > 0.

From the nonlinear dynamics viewpoint, a lasing so-
lution always corresponds to a loss of stability of the
nonlasing stationary solution. Equation (2) is linearized
about the solution (10). The resulting Jacobian matrix
can be split into two independent submatrices. One of
them governs the stability of the variables «, 31 and z32
and therefore the generation of the lasing field. The char-
acteristic polynomial of this sub-matrix is

A+ AN+ AN+ A4 =0, (13)
with the coefficients

Az =k + 7.+,
A1 = k(va + %) + Y7 + O + grus,

Ao = K(Q% +7a7) + g(vpm1s + 121 % /7). (14)

We apply the Hurwitz criteria for determining the
instabilities associated with the above polynomial:
Az, A1, Ag > 0 and Hy = A3 A; — Ay > 0 signify negative
real parts of all eigen- values which means the stability of
the nonlasing solution. From Eq. (14), we know that As
and A; are always positive (for noninversion niz > 0).
The destabilization of the trivial solution occurs through
a pitchfork bifurcation (static instability) if Ag < 0, or,
alternatively, through a Hopf bifurcation (self-pulsing in-
stability) if H> < 0. In this case, v/A; gives the angular
pulsation frequency of the lasing field at the destabiliza-
tion point. Here

Hy = (Yo +7)[k(k + Y0 + 1) + Yavs + 7]

+9[(k + Ya)n13 — Qz21]. (15)

Mompart et al. pointed out that for a closed lower-
ladder scheme, the destabilization of the nonlasing so-
lution occurs only via a Hopf bifurcation, giving rise to
the self-pulsing emission'¥). From Eq. (15), as ny3 > 0
(noninversion), in order to satisfy the condition of Hopf
bifurcation (Hy < 0),z21 > 0 (noninversion between lev-
els 1 and 2) is necessary. We can suitably select parame-
ters’ values of the system to make Ha < 0. For Q =0 as
well as for very large value of 02, Hy is positive and the
nonlasing solution is stable. Figure 2 illustrates different
curves Hy = 0 as a function of the linewidth of the driv-
ing field, where the value of g is given in MHz? and the
other parameters are given in MHz. For a given value
of the linewidth, for example Ry, = 0, LWI is obtained
within a closed curve in the 2 — A plane (Hz < 0). Out-
side this curve the nonlasing solution is stable. With the
increment of the linewidth, the threshold of the pump
field or the driving field clearly increases. Furthermore,
the area domain to get LWI is significantly decreased.
For given parameters in this paper, LWI will be impos-
sible when linewidth excesses 5.0, no matter how strong
the driving field or the pump field is. So the effect of
phase fluctuation in driving field is not neglectable. In
practical experiment for LWI, it is necessary to reduce
the phase diffusion of the driving field.
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Fig. 2. LWI regions in the Q2 — A plane for several values of
linewidth. Every curve corresponds to Rr=0, 1, 2, 3, 4 and
4.9 from outside to inside, respectively. The other parame-
ters’ values are k = 0.5, g = 10000, y31 = 3.5, y12=19.

36.4 . . . . .

36.2 1 1

Angular frequency

0 1 2 3 4 5
Linewidth
Fig. 3. The angular frequency of the lasing field versus the

linewidth of the driving field. © = 10,A = 5. The other
parameters’ values are the same as those in Fig. 2.

Mompart et al. investigated the evolution of the LWI
laser field amplitude using a direct numerical integra-
tion of Eq. (2) and found that the laser field oscillates
around zero with an angular frequency after a transient
time. Now we study the effect of the phase fluctuation
on the angular frequency and get the angular pulsation
frequency as the function of the linewidth of the driv-
ing field, as shown in Fig. 3. It shows that the angular
frequency is monotonously lowered with the increment
of the linewidth. So the phase fluctuation in the driving
field will decrease the oscillating angular frequency of the
self-pulsing LWI laser output.

In conclusion, we investigate the nonlinear dynamics
behavior of LWI by taking into account the effect of phase
fluctuation in the driving field based on a closed three
level ladder-type atomic model. It is shown that due to

the phase fluctuation of the driving field, the necessary
threshold is increased significantly. Furthermore the area
domain to get LWI is decreased. The fact that the phase
fluctuation on the driving field decreases the angular fre-
quency of output laser is also found.

C. Liu’s e-mail address is chpliu@yahoo.com.cn.
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